First-order differential calculi and Laplacians on q-deformations of compact semisimple Lie groups

Heon Lee

(Pronounciation of Heon: "Honey" without -ey at the end)

Institute for Advanced Study in Mathematics of Harbin Institute of Technology, China

heoney93@gmail.com

April, 2025

Quantum Groups Seminar

Table of Contents

- 1 Laplacian
- 2 Compact quantum groups
- Motivation
- 4 Laplacian on CQGs
- 5 Application to q-deformations
- 6 Heat semigroups on K_q

Laplacian on Riemannian manifolds

• (M,g): n-dimensional Riemannian manifold

Definition

The Laplacian on (M,g) is $\Box: C^{\infty}(M) \to C^{\infty}(M)$ defined locally by

$$\Box f = -\left(\frac{\partial^2 f}{\partial x_1^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}\right) + O(g).$$

• The heat equation on *M*:

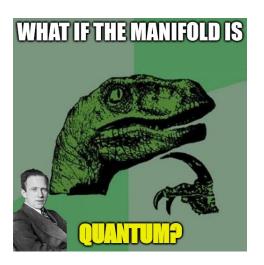
$$\frac{\partial u}{\partial t}(t,x) = - \square_x u(t,x), \quad u \in C^{\infty}(\mathbb{R}_{\geq 0} \times M)$$

- \Rightarrow $\{e^{-t\Box}: L^2(M) \to L^2(M) \mid t \ge 0\}$: Heat semigroup on (M,g)
- → Geometric invariants, e.g., Atiyah-Singer index theorem.

How Laplacian reveals geometry

Manifold → Laplacian → Heat equation → Geometry

Big picture



Noncommutative manifold → Laplacian →

Heat equation → Noncommutative geometry

Question

What is Laplacian on a noncommutative manifold?

Table of Contents

- 1 Laplacian
- Compact quantum groups
- Motivation
- 4 Laplacian on CQGs
- 6 Application to q-deformations
- 6 Heat semigroups on K_q

Compact quantum groups

Compact quantum groups afford many well-behaving "noncommutative manifolds".

Compact quantum group

Definition

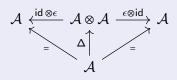
A unital *-algebra \mathcal{A} (over \mathbb{C}) equipped with the following structure maps is called a **compact quantum group (CQG)**.

• (Comultiplication) $\Delta: A \to A \otimes A$: unital *-algebra homomorphism

$$\begin{array}{cccc} \mathcal{A} \otimes \mathcal{A} \otimes \mathcal{A} & \longleftarrow_{\Delta \otimes \mathrm{id}} & \mathcal{A} \otimes \mathcal{A} \\ & & & & \Delta \\ & & & & \Delta \\ \end{array}$$

$$\mathcal{A} \otimes \mathcal{A} & \longleftarrow_{\Delta} & \mathcal{A}$$

• (Counit) $\epsilon: A \to \mathbb{C}$: *-algebra homomorphism



Compact quantum group

• (Antipode) $S: A \to A$: linear map

$$\begin{array}{ccccc} \mathcal{A} \otimes \mathcal{A} & \stackrel{\mathsf{S} \otimes \mathsf{id}}{\longleftarrow} & \mathcal{A} \otimes \mathcal{A} & \stackrel{\mathsf{id} \otimes \mathsf{S}}{\longrightarrow} & \mathcal{A} \otimes \mathcal{A} \\ \downarrow^{\mu} & & \triangle^{\uparrow} & & \downarrow^{\mu} \\ \mathcal{A} & \stackrel{\epsilon}{\longrightarrow} & \mathcal{A} & \longleftarrow^{\epsilon} & \mathcal{A} \end{array}$$

- (Haar state) $h: A \to \mathbb{C}$: linear functional
 - Positivity) $h(a^*a) \ge 0$
 - (Invariance) $(h \otimes id)\Delta(a) = h(a)1_A = (id \otimes h)\Delta(a)$
 - (Faithfulness) $h(a^*a) = 0$ implies a = 0.
 - (Normalization) $h(1_A) = 1$

First-order differential calculus on a CQG

- A: CQG
- Ω: A-bimodule
- $\mathcal{A} \xrightarrow{d} \Omega$: \mathbb{C} -linear map

Definition (Woronowicz '89)

The pair (Ω, d) is a first-order differential calculus (FODC) over $\mathcal A$ if

- (Leibniz rule) d(ab) = (da)b + a(db) for all $a, b \in A$
- (Standard form) Every element $\omega \in \Omega$ can be expressed as

$$\omega = \sum_{j=1}^{k} a_j db_j$$

Table of Contents

- Laplacian
- Compact quantum groups
- Motivation
- 4 Laplacian on CQGs
- 5 Application to q-deformations
- 6 Heat semigroups on K_q

Matrix coefficients

K: Compact Hausdorff group

Definition

• (Matrix coefficients) $\pi: K \to \text{End}(V)$: conti. fin. dim'l repn, $v, w \in V$

$$K \ni x \longmapsto \langle v, \pi(x)w \rangle \in \mathbb{C}$$

• Pol(K): the unital *-algebra of matrix coefficients of K

The CQG Pol(K)

Pol(K) is a CQG when endowed with:

- (Comultiplication) $\Delta(f)(x, y) = f(xy)$
- (Counit) $\epsilon(f) = f(e)$
- (Antipode) $S(f)(x) = f(x^{-1})$
- (Haar state) $h(f) = \int_K f(x) dx$ (integration w.r.t. the Haar measure).

Classical first-order differential calculus

- K: compact Lie group with Lie algebra &
- $\exp: \mathfrak{k} \to K$: exponential map
- $X \in \mathfrak{k}$ and $f \in Pol(K) \Rightarrow Define <math>Xf \in Pol(K)$ by

$$Xf(x) = \frac{d}{dt}\Big|_{t=0} f(x \exp(tX)), \quad x \in K.$$

• $\{X_1, \dots, X_n\}$: basis of \mathfrak{k}

Classical first-order differential calculus

The space of differential 1-forms is defined to be the Pol(K)-module

$$\Omega_K = \text{Pol}(K)^n$$
.

The classical differential $d : Pol(K) \rightarrow \Omega_K$ is given by

$$df = (X_1 f, \dots, X_n f).$$

Characterization of the classical Laplacian

• Consider the Pol(K)-valued sesquilinear form on $\Omega_K = Pol(K)^n$

$$\langle \cdot, \cdot \rangle : \Omega_K \times \Omega_K \ni \left((f_j)_{j=1}^n, (g_j)_{j=1}^n \right) \longmapsto \sum_{j=1}^n \overline{f_j} g_j \in Pol(K).$$

Characterization of Laplacian

The linear map \Box : $Pol(K) \rightarrow Pol(K)$ defined by

$$\Box f = -(X_1^2 f + \dots + X_n^2 f), \quad f \in \mathsf{Pol}(K)$$

is a **Laplacian** on K. It is the unique map satisfying

$$\int_{K} \overline{f(x)}(\Box g)(x) dx = \int_{K} \langle df, dg \rangle(x) dx, \quad \forall f, g \in Pol(K).$$

Characterization of Laplacian

• Consider the Pol(K)-valued sesquilinear form on $\Omega_K \cong Pol(K)^n$

$$\langle \cdot, \cdot \rangle : \Omega_K \times \Omega_K \ni \left((f_j)_{j=1}^n, (g_j)_{j=1}^n \right) \longmapsto \sum_{j=1}^n \overline{f_j} g_j \in Pol(K).$$

Characterization of Laplacian

The linear map \Box : $Pol(K) \rightarrow Pol(K)$ defined by

$$\Box f = -(X_1^2 + \dots X_n^2)f, \quad f \in Pol(K)$$

is a **Laplacian** on K. It is the unique map satisfying

$$h(f^* \square g) = \int_K \overline{f(x)}(\square g)(x) dx = \int_K \langle df, dg \rangle(x) dx = h(\langle df, dg \rangle).$$

• The red-colored expressions admit generalizations to CQGs!

Table of Contents

- Laplacian
- 2 Compact quantum groups
- Motivation
- 4 Laplacian on CQGs
- 5 Application to *q*-deformations
- \bigcirc Heat semigroups on K_q

Definition of Laplacian on a CQG

- *A*: CQG
- (Ω, d) : FODC over A
- $\Omega \times \Omega \xrightarrow{\langle \cdot, \cdot \rangle} \mathcal{A}$: sesquilinear map such that

$$\Omega \times \Omega \ni (\omega, \eta) \longmapsto h(\langle \omega, \eta \rangle) \in \mathbb{C}$$

is nondegenerate. We call this property **strong nondegeneracy**.

Definition

A (unique) linear operator $\Box: A \rightarrow A$ satisfying

$$h(f^* \Box g) = h(\langle df, dg \rangle), \quad \forall f, g \in A$$

is called the Laplacian associated with $(\Omega, d, \langle \cdot, \cdot \rangle)$.

Remark

• Previous approaches (Heckenberger et al., Landi et al., Majid et al.)

Remark

• Previous approaches (Heckenberger et al., Landi et al., Majid et al.)

Our approach

Main construction

• $\mathcal{A} = \bigoplus_{\mu \in Irr(\mathcal{A})} M_{n_{\mu}}(\mathbb{C})$: Peter-Weyl decomposition of the CQG \mathcal{A}

Theorem (L' 24)

Let $\Box: \mathcal{A} \to \mathcal{A}$ be a linear map such that

- L1 □ diagonalizes over the Peter-Weyl decomposition with real eigenvalues
- $L2 \square S = S \square$
- L3 $\Box(1) = 0$.

Then, \Box is a Laplacian, i.e., there exists an FODC $(\Omega, d, \langle \cdot, \cdot \rangle)$ over $\mathcal A$ s.t.

$$h(f^* \square g) = h(\langle df, dg \rangle), \quad \forall f, g \in \mathcal{A}.$$

Main construction

• $\mathcal{A} = \bigoplus_{\mu \in Irr(\mathcal{A})} M_{n_{\mu}}(\mathbb{C})$: Peter-Weyl decomposition of the CQG \mathcal{A}

Theorem (L' 24)

Let $\Box: \mathcal{A} \to \mathcal{A}$. If (1) \Box diagonalizes over the Peter-Weyl decomposition with real eigenvalues, (2) $\Box S = S\Box$, and (3) \Box (1) = 0, then

- $R_{\square} = \{ f \in \operatorname{Ker} \epsilon \mid \epsilon \square (fg) = 0, \forall g \in \operatorname{Ker} \epsilon \}$ is an ad-invariant right ideal \rightsquigarrow we get bicovariant FODC (Ω_{\square}, d)
- The map $\langle \cdot, \cdot \rangle : \Omega_{\square} \times \Omega_{\square} \to \mathcal{A}$ defined by

$$\langle adb, fdg \rangle = -\frac{1}{2} (a b_{(1)})^* f g_{(1)} \epsilon \circ \Box ((b_{(2)}^* - \epsilon(b_{(2)}^*))(g_{(2)} - \epsilon(g_{(2)})))$$

for $a, b, f, g \in A$ is a strongly nondegenerate A-sesquilinear form.

• The linear map $\Box: \mathcal{A} \to \mathcal{A}$ becomes a Laplacian, i.e., it satisfies $h(f^* \Box g) = h(\langle df, dg \rangle), \quad \forall f, g \in \mathcal{A}$

Table of Contents

- Laplacian
- 2 Compact quantum groups
- Motivation
- 4 Laplacian on CQGs
- 5 Application to q-deformations
- 6 Heat semigroups on K_q

q-deformation

- ullet K: simply-connected compact semisimple Lie group with Lie algebra ${\mathfrak k}$
- $U(\mathfrak{g})$: universal enveloping algebra of $\mathfrak{g} = \mathbb{C} \otimes_{\mathbb{R}} \mathfrak{k}$
- The bilinear pairing $\mathfrak{k} \times \operatorname{Pol}(K) \ni (X, f) \longmapsto Xf(e) \in \mathbb{C}$ extends to

$$U(\mathfrak{g}) \times \mathsf{Pol}(K) \to \mathbb{C} \xrightarrow{q\text{-deformation}} U_q(\mathfrak{g}) \times \mathsf{Pol}(K_q) \to \mathbb{C}$$

- $U_q(\mathfrak{g})$: quantized universal enveloping algebra
- $Pol(K_q)$: quantized algebra of functions $\Rightarrow Pol(K_q)$ is a CQG.

Theorem (L' 24)

- ullet Classification of linear operators on Pol(K_q) satisfying L1–L3 (and L4)
- For any finite dimensional bicovariant FODC on K_q , there are infinitely many Laplacians associated with it.

Remark

• Previous approaches (Heckenberger et al., Landi et al., Majid et al.)

Our approach

Laplacians on K_q

Theorem (L' 24)

Linear operators on $Pol(K_q)$ satisfying L1 and L4 are given by linear combinations of operators on $Pol(K_q)$ of the form

$$(\mathsf{Ev}_\zeta z_\mu) \rhd f = (\mathsf{id} \otimes \mathsf{Ev}_\zeta \otimes z_\mu) \Delta^2(f), \quad f \in \mathsf{Pol}(K_q)$$

where Ev_{ζ} for $\zeta \in Z \subseteq K$, the center of K, is given by

$$\operatorname{Ev}_{\zeta}:\operatorname{Pol}(K_q)\twoheadrightarrow\operatorname{Pol}(Z)\stackrel{\operatorname{ev}_{\zeta}}{\longrightarrow}\mathbb{C},$$

and $z_{\mu} \in ZU_q(\mathfrak{g})$ for $\mu \in \mathbf{P}^+$ is quantum Casimir element.

Comparison with the classical Laplacian

- □: classical Laplacian on K
- ullet \Box_q : a Laplacian on K_q in the classification

	$\Box: \operatorname{Pol}(K) \to \operatorname{Pol}(K)$	$\square_q : Pol(K_q) \to Pol(K_q)$
Spectrum	discrete, nonnegative	discrete, lower-semibounded
Eigenvalues	diverge to ∞	diverge to ∞
$\mathit{h} ig(\langle \cdot, \cdot angle ig)$	positive definite	nondegenerate

Table: Comparison with the classical Laplacian

• Most importantly, $\lim_{q\to 1} \Box_q = \Box$

The $q \rightarrow 1$ limits of q-Laplacians

Theorem (L' 24)

As $q \to 1$, the Laplacian \square_q converges to the classical Laplacian \square on K:

$$\begin{array}{c} \operatorname{Pol}(K_q) & \stackrel{\square_q}{\longrightarrow} \operatorname{Pol}(K_q) \\ & \parallel \\ \bigoplus_{\lambda \in \mathbf{P}^+} M_{n_{\lambda}}(\mathbb{C}) & \stackrel{\left(c_q(\lambda)\right)_{\lambda}}{\longrightarrow} \bigoplus_{\lambda \in \mathbf{P}^+} M_{n_{\lambda}}(\mathbb{C}) \\ & \text{as } q \to 1 \downarrow \\ \bigoplus_{\lambda \in \mathbf{P}^+} M_{n_{\lambda}}(\mathbb{C}) & \stackrel{\left(c(\lambda)\right)_{\lambda}}{\longrightarrow} \bigoplus_{\lambda \in \mathbf{P}^+} M_{n_{\lambda}}(\mathbb{C}) \\ & \parallel & \parallel \\ & \operatorname{Pol}(K) & \stackrel{\square}{\longrightarrow} \operatorname{Pol}(K) \end{array}$$

Table of Contents

- Laplacian
- 2 Compact quantum groups
- Motivation
- 4 Laplacian on CQGs
- 6 Application to q-deformations
- \bigcirc Heat semigroups on K_q

The heat kernel and the heat semigroup on K_q

• $C(K_q)$: C^* -algebra completion of $Pol(K_q)$

Definition (L, Lee, Wang, Youn in progress)

• The family of elements

$$p_{t} = \sum_{\mu \in \mathbf{P}^{+}} d_{\mu} e^{-tc_{q}(\mu)} \sum_{1 \leq i, j \leq n_{\mu}} (F_{\mu})_{ij} u_{ji}^{\mu} \in C(K_{q}), \quad t > 0$$

is called **the heat kernel on** K_q .

The family of bounded operators

$$P_t: C(K_q) \ni f \longmapsto (id \otimes h(\cdot p_t))\Delta(f) \in C(K_q), \quad t > 0$$

and $P_0 = id_{C(K_q)}$ is called **the heat semigroup on** $C(K_q)$.

* One can define heat semigroups on $L^p(K_q)$ for all $1 \le p \le \infty$ using p_t .

Properties of the heat semigroup

Proposition (L, Lee, Wang, Youn in progress)

- $P_{t_1+t_2} = P_{t_1}P_{t_2}$ for $t_1, t_2 \ge 0$
- For $v \in C(K_q)$, the map $t \mapsto P_t v \in C(K_q)$ is continuous on $(0, \infty)$.

Theorem (L' 24)

The operators P_t are not completely positive.

Remark

The heat diffusion processes on K_q are not quantum Markov processes.

The heat equation on K_q

Heat equation on K_q (L, Lee, Wang, Youn in progress)

Given $v \in C(K_q)$, does there exist $u : [0, \infty) \to C(K_q)$ s.t.

$$u_0 = v$$
, $\frac{d}{dt}u_t + \Box_q u_t = 0$?

And if it does, is the solution unique?

- We found that $u_t = P_t v$ is a solution.
- However, we failed to prove that $\lim_{t\to 0} P_t v = v$, which holds iff

$$\{P_t \mid 0 \le t \le 1\}$$
 is uniformly bounded

by Banach-Steinhaus theorem.

Thank you for your attention