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Laplacian on Riemannian manifolds

(M,g): n-dimensional Riemannian manifold

Definition

The Laplacian on (M,g) is ◻ ∶ C∞(M) → C∞(M) defined locally by

◻f = −(∂
2f

∂x21
+⋯ + ∂2f

∂x2n
) +O(g).

The heat equation on M:

∂u

∂t
(t, x) = − ◻x u(t, x), u ∈ C∞(R≥0 ×M)

↝ {e−t◻ ∶ L2(M) → L2(M) ∣ t ≥ 0}: Heat semigroup on (M,g)

↝ Geometric invariants, e.g., Atiyah-Singer index theorem.
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How Laplacian reveals geometry

Manifold → Laplacian → Heat equation → Geometry
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Big picture

Noncommutative manifold → Laplacian →
Heat equation → Noncommutative geometry
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Question

What is Laplacian on a noncommutative manifold?
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Compact quantum groups

Compact quantum groups afford many well-behaving
“noncommutative manifolds”.
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Compact quantum group

Definition

A unital ∗-algebra A (over C) equipped with the following structure maps
is called a compact quantum group (CQG).

(Comultiplication) ∆ ∶ A → A⊗A: unital ∗-algebra homomorphism

A⊗A⊗A A⊗A

A⊗A A

∆⊗id

id⊗∆

∆

∆

(Counit) ϵ ∶ A → C: ∗-algebra homomorphism

A A⊗A A

A

id⊗ϵ ϵ⊗id

=
∆

=
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Compact quantum group

(Antipode) S ∶ A → A: linear map

A⊗A A⊗A A⊗A

A A A

µ

S⊗id id⊗S

µ

ϵ

∆

ϵ

(Haar state) h ∶ A → C: linear functional

▸ (Positivity) h(a∗a) ≥ 0

▸ (Invariance) (h ⊗ id)∆(a) = h(a)1A = (id⊗h)∆(a)

▸ (Faithfulness) h(a∗a) = 0 implies a = 0.

▸ (Normalization) h(1A) = 1
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First-order differential calculus on a CQG

A: CQG
Ω: A-bimodule

A dÐ→ Ω: C-linear map

Definition (Woronowicz ’89)

The pair (Ω,d) is a first-order differential calculus (FODC) over A if

(Leibniz rule) d(ab) = (da)b + a(db) for all a,b ∈ A
(Standard form) Every element ω ∈ Ω can be expressed as

ω =
k

∑
j=1

ajdbj
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Matrix coefficients
K : Compact Hausdorff group

Definition

(Matrix coefficients) π ∶ K → End(V ): conti. fin. dim’l repn, v ,w ∈ V

K ∋ x z→ ⟨v , π(x)w⟩ ∈ C

Pol(K): the unital ∗-algebra of matrix coefficients of K

The CQG Pol(K)
Pol(K) is a CQG when endowed with:

(Comultiplication) ∆(f )(x , y) = f (xy)
(Counit) ϵ(f ) = f (e)
(Antipode) S(f )(x) = f (x−1)
(Haar state) h(f ) = ∫

K
f (x)dx (integration w.r.t. the Haar measure).
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Classical first-order differential calculus

K : compact Lie group with Lie algebra k

exp ∶ k→ K : exponential map

X ∈ k and f ∈ Pol(K) ↝ Define Xf ∈ Pol(K) by

Xf (x) = d

dt
∣
t=0

f (x exp(tX )), x ∈ K .

{X1,⋯,Xn}: basis of k

Classical first-order differential calculus

The space of differential 1-forms is defined to be the Pol(K)-module

ΩK = Pol(K)n.

The classical differential d ∶ Pol(K) → ΩK is given by

df = (X1f ,⋯,Xnf ).
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Characterization of the classical Laplacian

Consider the Pol(K)-valued sesquilinear form on ΩK = Pol(K)n

⟨ ⋅ , ⋅ ⟩ ∶ ΩK ×ΩK ∋ ((fj)nj=1, (gj)nj=1) z→
n

∑
j=1

fjgj ∈ Pol(K).

Characterization of Laplacian

The linear map ◻ ∶ Pol(K) → Pol(K) defined by

◻f = −(X 2
1 f +⋯ +X 2

n f ), f ∈ Pol(K)

is a Laplacian on K . It is the unique map satisfying

∫
K
f (x)(◻g)(x)dx = ∫

K
⟨df ,dg⟩(x)dx , ∀f ,g ∈ Pol(K).
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Characterization of Laplacian

Consider the Pol(K)-valued sesquilinear form on ΩK ≅ Pol(K)n

⟨ ⋅ , ⋅ ⟩ ∶ ΩK ×ΩK ∋ ((fj)nj=1, (gj)nj=1) z→
n

∑
j=1

fjgj ∈ Pol(K).

Characterization of Laplacian

The linear map ◻ ∶ Pol(K) → Pol(K) defined by

◻f = −(X 2
1 +⋯X 2

n )f , f ∈ Pol(K)

is a Laplacian on K . It is the unique map satisfying

h(f ∗ ◻ g) =∫
K
f (x)(◻g)(x)dx = ∫

K
⟨df ,dg⟩(x)dx = h(⟨df ,dg⟩).

The red-colored expressions admit generalizations to CQGs!
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Definition of Laplacian on a CQG

A: CQG
(Ω,d): FODC over A

Ω ×Ω ⟨ ⋅ , ⋅ ⟩ÐÐ→ A: sesquilinear map such that

Ω ×Ω ∋ (ω, η) z→ h(⟨ω, η⟩) ∈ C

is nondegenerate. We call this property strong nondegeneracy.

Definition

A (unique) linear operator ◻ ∶ A → A satisfying

h(f ∗ ◻ g) = h(⟨df ,dg⟩), ∀f ,g ∈ A

is called the Laplacian associated with (Ω,d , ⟨⋅, ⋅⟩).
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Remark

Previous approaches (Heckenberger et al., Landi et al., Majid et al.)

FODC (Ω,d , ⟨⋅, ⋅⟩) ⇒ Laplacian: The unique map ◻ ∶ A → A satisfying

h(f ∗ ◻ g) = h(⟨df ,dg⟩)

Our approach

Operator ◻ ∶ A → A FODC (Ω◻,d , ⟨⋅, ⋅⟩)

◻ becomes Laplacian:

h(f ∗ ◻ g) = h(⟨df ,dg⟩)
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Main construction

A = ⊕
µ∈Irr(A)

Mnµ(C): Peter-Weyl decomposition of the CQG A

Theorem (L’ 24)

Let ◻ ∶ A → A be a linear map such that

L1 ◻ diagonalizes over the Peter-Weyl decomposition with real
eigenvalues

L2 ◻S = S◻
L3 ◻(1) = 0.
Then, ◻ is a Laplacian, i.e., there exists an FODC (Ω,d , ⟨⋅, ⋅⟩) over A s.t.

h(f ∗ ◻ g) = h(⟨df ,dg⟩), ∀f ,g ∈ A.
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Main construction

A = ⊕
µ∈Irr(A)

Mnµ(C): Peter-Weyl decomposition of the CQG A

Theorem (L’ 24)

Let ◻ ∶ A → A. If (1) ◻ diagonalizes over the Peter-Weyl decomposition
with real eigenvalues, (2) ◻S = S◻, and (3) ◻(1) = 0, then

R◻ = {f ∈ Ker ϵ ∣ ϵ ◻ (fg) = 0, ∀g ∈ Ker ϵ} is an ad-invariant right ideal
↝ we get bicovariant FODC (Ω◻,d)

The map ⟨⋅, ⋅⟩ ∶ Ω◻ ×Ω◻ → A defined by

⟨adb, fdg⟩ = −1
2
(a b(1))∗ f g(1) ϵ ○ ◻((b∗(2) − ϵ(b

∗
(2)))(g(2) − ϵ(g(2))))

for a,b, f ,g ∈ A is a strongly nondegenerate A-sesquilinear form.

The linear map ◻ ∶ A → A becomes a Laplacian, i.e., it satisfies
h(f ∗ ◻ g) = h(⟨df ,dg⟩), ∀f ,g ∈ A
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q-deformation

K : simply-connected compact semisimple Lie group with Lie algebra k

U(g): universal enveloping algebra of g = C⊗R k

The bilinear pairing k × Pol(K) ∋ (X , f ) z→ Xf (e) ∈ C extends to

U(g) × Pol(K) → C
q-deformationÐÐÐÐÐÐÐ→ Uq(g) × Pol(Kq) → C

Uq(g): quantized universal enveloping algebra

Pol(Kq): quantized algebra of functions ↝ Pol(Kq) is a CQG.

Theorem (L’ 24)

Classification of linear operators on Pol(Kq) satisfying L1–L3 (and L4)

For any finite dimensional bicovariant FODC on Kq, there are
infinitely many Laplacians associated with it.
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Remark

Previous approaches (Heckenberger et al., Landi et al., Majid et al.)

FODC (Ω,d , ⟨⋅, ⋅⟩) ⇒ Laplacian: The unique map ◻ ∶ A → A satisfying

h(f ∗ ◻ g) = h(⟨df ,dg⟩)

Our approach

Operator ◻ ∶ A → A FODC (Ω◻,d , ⟨⋅, ⋅⟩)

◻ becomes Laplacian:

h(f ∗ ◻ g) = h(⟨df ,dg⟩)
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Laplacians on Kq

Theorem (L’ 24)

Linear operators on Pol(Kq) satisfying L1 and L4 are given by linear
combinations of operators on Pol(Kq) of the form

(Evζ zµ) ▷ f = (id⊗Evζ ⊗zµ)∆2(f ), f ∈ Pol(Kq)

where Evζ for ζ ∈ Z ⊆ K , the center of K , is given by

Evζ ∶ Pol(Kq) ↠ Pol(Z)
evζÐÐ→ C,

and zµ ∈ ZUq(g) for µ ∈ P+ is quantum Casimir element.

Heon Lee (IASM of HIT) FODCs and Laplacians on q-deformations April, 2025 25 / 32



Comparison with the classical Laplacian

◻: classical Laplacian on K

◻q: a Laplacian on Kq in the classification

◻ ∶ Pol(K) → Pol(K) ◻q ∶ Pol(Kq) → Pol(Kq)
Spectrum discrete, nonnegative discrete, lower-semibounded
Eigenvalues diverge to ∞ diverge to ∞
h(⟨⋅, ⋅⟩) positive definite nondegenerate

Table: Comparison with the classical Laplacian

Most importantly, limq→1 ◻q = ◻
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The q → 1 limits of q-Laplacians

Theorem (L’ 24)

As q → 1, the Laplacian ◻q converges to the classical Laplacian ◻ on K :

Pol(Kq) Pol(Kq)

⊕
λ∈P+

Mnλ(C) ⊕
λ∈P+

Mnλ(C)

◻q

(cq(λ))
λ

as q → 1 ↓

⊕
λ∈P+

Mnλ(C) ⊕
λ∈P+

Mnλ(C)

Pol(K) Pol(K)

(c(λ))
λ

◻
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The heat kernel and the heat semigroup on Kq

C(Kq): C∗-algebra completion of Pol(Kq)

Definition (L, Lee, Wang, Youn in progress)

The family of elements

pt = ∑
µ∈P+

dµe
−tcq(µ) ∑

1≤i ,j≤nµ

(Fµ)ijuµji ∈ C(Kq), t > 0

is called the heat kernel on Kq.

The family of bounded operators

Pt ∶ C(Kq) ∋ f z→ ( id⊗h( ⋅ pt))∆(f ) ∈ C(Kq), t > 0

and P0 = idC(Kq) is called the heat semigroup on C(Kq).
* One can define heat semigroups on Lp(Kq) for all 1 ≤ p ≤ ∞ using pt .
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Properties of the heat semigroup

Proposition (L, Lee, Wang, Youn in progress)

Pt1+t2 = Pt1Pt2 for t1, t2 ≥ 0
For v ∈ C(Kq), the map t ↦ Ptv ∈ C(Kq) is continuous on (0,∞).

Theorem (L’ 24)

The operators Pt are not completely positive.

Remark

The heat diffusion processes on Kq are not quantum Markov processes.
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The heat equation on Kq

Heat equation on Kq (L, Lee, Wang, Youn in progress)

Given v ∈ C(Kq), does there exist u ∶ [0,∞) → C(Kq) s.t.

u0 = v ,
d

dt
ut + ◻qut = 0?

And if it does, is the solution unique?

We found that ut = Ptv is a solution.

However, we failed to prove that limt→0 Ptv = v , which holds iff

{Pt ∣ 0 ≤ t ≤ 1} is uniformly bounded

by Banach-Steinhaus theorem.
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Thank you for your attention
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